If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43x^2-5x=0
a = 43; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·43·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*43}=\frac{0}{86} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*43}=\frac{10}{86} =5/43 $
| 2g^2+11g+12=0 | | 6=90x16/x | | -24=3(-7-2f)+6f | | 161+102+105+128+123+(x+11)=720 | | 3/4(8x-20)-(3x+1)=10-10(4-x) | | 18x+14+10x-18=360 | | 4d^2+13d+3=0 | | 189=2m | | 3b-39=-78 | | 4d^2+13+3=0 | | 10+17x=4x | | 10b+18=28 | | 6y-6=4y+24 | | 4+b4=2(4)+3(4+1) | | 20x-7=7x-2 | | 3h^2-41h-14=0 | | 7/10×x-4=42 | | h-19=72 | | h−19=72 | | g−12=26 | | f+3=75 | | 8x-2=11x-29 | | 2x°+78°=180° | | 8=u/6 | | 2(n-9=-4 | | 31n^2-33n=0 | | 1/4x*(-11)=5 | | x^2+8.1+15=1 | | b-6=2b-3 | | 3(b-10)=-30+3b | | (7x-13)=(x+29) | | 13k-6=3 |